A Current Sensor Based on the Giant Magnetoresistance Effect: Design and Potential Smart Grid Applications
نویسندگان
چکیده
Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A(-1), linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C(-1) with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids.
منابع مشابه
High-Spatial-Resolution Magnetic-Field Measurement by Giant Magnetoresistance Sensor – Applications to Nondestructive Evaluation and Biomedical Engineering
Giant magnetoresistance (GMR) sensor has been developed and widely applied to use as magnetic read head in data storage industry. This paper describes new applications of magnetic-field measurement with high spatial-resolution and high sensitivity to nondestructive evaluation and biomedical engineering. For nondestructive evaluation, the GMR sensor, used as magnetic sensor based on eddy-current...
متن کاملDesign and Modeling of a New Type of Tactile Sensor Based on the Deformation of an Elastic Membrane
This paper presents the design and modeling of a flexible tactile sensor, capable of detecting the 2D surface texture image, contact-force estimation and stiffness of the sensed object. The sensor is made of polymer materials. It consists of a cylindrical chamber for pneumatic actuation and a membrane with a mesa structure. The inner radius of the cylindrical chamber is 2cm and its outer radius...
متن کاملMagnetic Field Sensors Based on Giant Magnetoresistance (GMR) Technology: Applications in Electrical Current Sensing
The 2007 Nobel Prize in Physics can be understood as a global recognition to the rapid development of the Giant Magnetoresistance (GMR), from both the physics and engineering points of view. Behind the utilization of GMR structures as read heads for massive storage magnetic hard disks, important applications as solid state magnetic sensors have emerged. Low cost, compatibility with standard CMO...
متن کاملGiant Magnetoresistance: Basic Concepts, Microstructure, Magnetic Interactions and Applications
The giant magnetoresistance (GMR) effect is a very basic phenomenon that occurs in magnetic materials ranging from nanoparticles over multilayered thin films to permanent magnets. In this contribution, we first focus on the links between effect characteristic and underlying microstructure. Thereafter, we discuss design criteria for GMR-sensor applications covering automotive, biosensors as well...
متن کاملDesign, Modeling, and Construction of a New Tactile Sensor for Measuring Contact-Force
This paper presents the design, modeling, and testing of a flexible tactile sensor and its applications. This sensor is made of polymer materials and can detect the 2D surface texture image and contact-force estimation. The sensing mechanism is based on the novel contact deflection effect of a membrane. We measure the deflection of the membrane with measuring the strain in the membrane with emb...
متن کامل